Robot Operating Systems | Autonomous Robotics | University of Michigan

University of Michigan

Comprehensive introduction to the computational foundations of autonomous robotics, including kinematic modeling, path/motion planning, and motion control. Contextualizes concepts through ROS and LCM.

University CoursesRobotics

Introduction

AutoRob is an introduction to the computational foundations of autonomous robotics for programming modern mobile manipulation systems. AutoRob covers fundamental concepts in autonomous robotics for the kinematic modeling of arbitrary open-chain articulated robots and algorithmic reasoning for autonomous path and motion planning, and brief coverage of dynamics and motion control.

screenshot

Highlights

  • Covers fundamental concepts in autonomous robotics, including kinematic modeling, path and motion planning, and motion control
  • Contextualizes core concepts through their instantiation in modern robot operating systems like ROS and LCM
  • Includes projects that ground course concepts through implementation in JavaScript/HTML5 and tutorials for ROS and rosbridge

Recommendation

This course is recommended for students interested in developing full-stack mobile manipulation software systems. It provides a strong foundation in the computational aspects of autonomous robotics, making it a valuable course for those aspiring to work in the field of robotics.

How GetVM Works

Learn by Doing from Your Browser Sidebar

Access from Browser Sidebar

Access from Browser Sidebar

Simply install the browser extension and click to launch GetVM directly from your sidebar.

Select Your Playground

Select Your Playground

Choose your OS, IDE, or app from our playground library and launch it instantly.

Learn and Practice Side-by-Side

Learn and Practice Side-by-Side

Practice within the VM while following tutorials or videos side-by-side. Save your work with Pro for easy continuity.

Explore Similar Hands-on Tutorials

Artificial Intelligence for Robotics | MOOC - Udacity

0
University CoursesArtificial IntelligenceRobotics
Learn the fundamentals of AI and its applications in robotics through hands-on projects and expert-led instruction from Udacity.

Mobile Sensing and Robotics | Bonn University Course

0
University CoursesRobotics
Comprehensive course on mobile sensing and robotics, covering sensor technologies, localization, mapping, and navigation. Hands-on demonstrations and practical exercises.

Introduction to Feedback Control Systems | CMU 16-299 | Spring 2022

0
University CoursesControl TheoryRobotics
Explore the fundamentals of feedback control systems with intuitive concepts and hands-on lab components in this course by Chris Atkeson at Carnegie Mellon University.

Robot Dynamics | Advanced Robotics Course - CMU

0
University CoursesControl SystemsRobotics
Explore the fundamental principles and techniques of robot dynamics, including kinematics, kinetics, and control. Gain hands-on experience with practical examples and case studies.

Optimal Control Theory | Carnegie Mellon University

0
University CoursesControl SystemsRobotics
Comprehensive overview of optimal control theory, covering continuous-time and discrete-time systems. Hands-on exercises and insights from experienced CMU instructors.

Model Predictive Control Course | EPFL Engineering

0
University CoursesControl SystemsRobotics
Comprehensive course on the fundamentals of model predictive control (MPC), taught by a leading expert at EPFL. Hands-on exercises and industry-standard software.

Autonomous Vehicle System Engineering | UIUC CS 588 by David Forsyth

0
University CoursesComputer VisionDeep LearningRobotics
Comprehensive course on autonomous vehicle design, covering deep learning, computer vision, and control theory. Hands-on projects and simulations for practical experience.

Network Systems, Dynamics & Control | UC Santa Barbara ME 269

0
University CoursesControl TheoryRobotics
Comprehensive lectures on network systems, dynamics, and control by Professor Francesco Bullo at UC Santa Barbara. Suitable for students and professionals in engineering, math, and computer science.

Networked Control Systems | EPFL ME 427 | Giancarlo Ferrari Trecate

0
University CoursesControl SystemsRobotics
Explore the fundamentals of networked control systems, including network protocols, time-delay compensation, and stability analysis. Taught by an expert in the field.