Theory of Computing | Cornell University Graduate Course

Cornell University

Explore the power of efficient computation with this comprehensive graduate course in complexity theory from Cornell University.

University CoursesAlgorithm

Introduction

This graduate course gives a broad introduction to complexity theory, including classical results and recent developments. Complexity theory aims to understand the power of efficient computation (when computational resources like time and space are limited). Many compelling conceptual questions arise in this context. Most of these questions are (surprisingly?) difficult and far from being resolved. Nevertheless, a lot of progress has been made toward understanding them (and also why they are difficult).

screenshot

Highlights

  • Covers classical results and recent developments in complexity theory
  • Focuses on understanding the power of efficient computation
  • Explores compelling conceptual questions in complexity theory
  • Includes topics like combinatorial constructions with random-like properties, e.g., expander graphs and error-correcting codes

Recommendation

This course is recommended for graduate students interested in a broad introduction to complexity theory and its recent advances. It provides an opportunity to delve into the fundamental questions and challenges in this field, which are both intellectually stimulating and practically relevant.

How GetVM Works

Learn by Doing from Your Browser Sidebar

Access from Browser Sidebar

Access from Browser Sidebar

Simply install the browser extension and click to launch GetVM directly from your sidebar.

Select Your Playground

Select Your Playground

Choose your OS, IDE, or app from our playground library and launch it instantly.

Learn and Practice Side-by-Side

Learn and Practice Side-by-Side

Practice within the VM while following tutorials or videos side-by-side. Save your work with Pro for easy continuity.

Explore Similar Hands-on Tutorials

A Field Guide To Genetic Programming

30
Technical TutorialsAlgorithm
Comprehensive guide to genetic programming, covering evolutionary algorithms, computational biology, and advanced programming techniques. Valuable resource for computer scientists, biologists, and researchers.

Algorithms | Fundamental Concepts & Techniques

19
Technical TutorialsAlgorithmData Structures
Comprehensive guide to the fundamental concepts and techniques in the field of algorithms, covering discrete mathematics, data structures, and algorithm analysis.

Algorithms and Data Structures - With Applications to Graphics and Geometry

27
Technical TutorialsAlgorithmData Structures
Explore algorithms, data structures, and their practical applications in graphics and geometry. Suitable for beginners and experienced learners.

Data Structures | Algorithms | Efficient Software Systems

16
Technical TutorialsAlgorithmData Structures
Comprehensive guide to data structures and algorithms, covering arrays, linked lists, stacks, queues, trees, and more. Ideal for students, developers, and professionals seeking to build efficient software systems.

Data Structures (Into Java)

9
Technical TutorialsAlgorithmData StructuresJava
Comprehensive guide to understanding and implementing data structures using Java, covering arrays, linked lists, stacks, queues, trees, and more.

Data Structures and Algorithm Analysis in C++

7
Technical TutorialsAlgorithmC++
Comprehensive guide to data structures, algorithms, and problem-solving using C++. Suitable for students and professionals interested in algorithmic problem-solving.

Elementary Algorithms | Fundamental Algorithms and Data Structures

27
Technical TutorialsAlgorithmData Structures
Comprehensive introduction to fundamental algorithms and data structures, including sorting, searching, and algorithm design. Suitable for beginners and professionals.

Essential Algorithms | Comprehensive Guide to Algorithms and Data Structures

25
Technical TutorialsAlgorithmData Structures
Enhance your programming and problem-solving skills with Essential Algorithms, a comprehensive guide covering essential concepts for beginners and advanced programmers.

Learning Algorithm | Algorithms, Data Structures, Problem-Solving

26
Technical TutorialsAlgorithmData Structures
Explore a wide range of algorithms, from fundamental data structures to advanced techniques like dynamic programming and graph algorithms. Gain practical knowledge for software engineering and problem-solving.