Algorithms for Big Data | UIUC CS 498 ABD / CS 598 CSC

Chandra Chekuri

Explore efficient algorithms and techniques for processing and analyzing large-scale data, taught by expert Chandra Chekuri. Suitable for data science, machine learning, and big data enthusiasts.

University CoursesAlgorithmMapReduce

Introduction

This course covers algorithms and techniques for processing and analyzing large-scale data. It focuses on the design and analysis of efficient algorithms for big data problems, including topics such as MapReduce, streaming algorithms, and graph algorithms.

screenshot

Highlights

  • Covers a wide range of algorithms and techniques for big data processing
  • Taught by an expert in the field, Chandra Chekuri
  • Provides practical insights and hands-on experience with big data algorithms
  • Suitable for both undergraduate and graduate students

Recommendation

This course is highly recommended for students interested in data science, machine learning, and large-scale data processing. It provides a solid foundation in the algorithmic aspects of big data and is valuable for those pursuing careers in the field of big data and data engineering.

YouTube Videos

How GetVM Works

Learn by Doing from Your Browser Sidebar

Access from Browser Sidebar

Access from Browser Sidebar

Simply install the browser extension and click to launch GetVM directly from your sidebar.

Select Your Playground

Select Your Playground

Choose your OS, IDE, or app from our playground library and launch it instantly.

Learn and Practice Side-by-Side

Learn and Practice Side-by-Side

Practice within the VM while following tutorials or videos side-by-side. Save your work with Pro for easy continuity.

Explore Similar Hands-on Tutorials

A Field Guide To Genetic Programming

30
Technical TutorialsAlgorithm
Comprehensive guide to genetic programming, covering evolutionary algorithms, computational biology, and advanced programming techniques. Valuable resource for computer scientists, biologists, and researchers.

Algorithms | Fundamental Concepts & Techniques

19
Technical TutorialsAlgorithmData Structures
Comprehensive guide to the fundamental concepts and techniques in the field of algorithms, covering discrete mathematics, data structures, and algorithm analysis.

Algorithms and Data Structures - With Applications to Graphics and Geometry

27
Technical TutorialsAlgorithmData Structures
Explore algorithms, data structures, and their practical applications in graphics and geometry. Suitable for beginners and experienced learners.

Data Structures | Algorithms | Efficient Software Systems

16
Technical TutorialsAlgorithmData Structures
Comprehensive guide to data structures and algorithms, covering arrays, linked lists, stacks, queues, trees, and more. Ideal for students, developers, and professionals seeking to build efficient software systems.

Data Structures (Into Java)

9
Technical TutorialsAlgorithmData StructuresJava
Comprehensive guide to understanding and implementing data structures using Java, covering arrays, linked lists, stacks, queues, trees, and more.

Data Structures and Algorithm Analysis in C++

7
Technical TutorialsAlgorithmC++
Comprehensive guide to data structures, algorithms, and problem-solving using C++. Suitable for students and professionals interested in algorithmic problem-solving.

Elementary Algorithms | Fundamental Algorithms and Data Structures

27
Technical TutorialsAlgorithmData Structures
Comprehensive introduction to fundamental algorithms and data structures, including sorting, searching, and algorithm design. Suitable for beginners and professionals.

Essential Algorithms | Comprehensive Guide to Algorithms and Data Structures

25
Technical TutorialsAlgorithmData Structures
Enhance your programming and problem-solving skills with Essential Algorithms, a comprehensive guide covering essential concepts for beginners and advanced programmers.

Learning Algorithm | Algorithms, Data Structures, Problem-Solving

26
Technical TutorialsAlgorithmData Structures
Explore a wide range of algorithms, from fundamental data structures to advanced techniques like dynamic programming and graph algorithms. Gain practical knowledge for software engineering and problem-solving.