Stochastic Methods for Data Analysis, Inference & Optimization | Harvard University

Harvard University

Explore the powerful techniques of Monte Carlo methods and their applications in data analysis, inference, and optimization at Harvard University.

University CoursesMachine Learning

Introduction

Monte Carlo methods are a diverse class of algorithms that rely on repeated random sampling to compute the solution to problems whose solution space is too large to explore systematically or whose systemic behavior is too complex to model. This course introduces important principles of Monte Carlo techniques and demonstrates the power of these techniques with simple (but very useful) applications.

screenshot

Highlights

  • Covers basic ideas of Bayesian analysis and Markov chain Monte Carlo samplers
  • Explores more recent developments such as slice sampling, multi-grid Monte Carlo, Hamiltonian Monte Carlo, parallel tempering and multi-nested methods
  • Investigates streaming methods like particle filters/sequential Monte Carlo
  • Delves into related topics in stochastic optimization and inference such as genetic algorithms, simulated annealing, probabilistic Gaussian models, and Gaussian processes
  • Applications to Bayesian inference and machine learning are used throughout

Recommendation

This course is recommended for students interested in learning about the powerful techniques of Monte Carlo methods and their applications in data analysis, inference, and optimization. It provides a comprehensive understanding of the fundamental principles and recent advancements in this field, making it a valuable resource for those pursuing careers in data science, machine learning, and computational science.

How GetVM Works

Learn by Doing from Your Browser Sidebar

Access from Browser Sidebar

Access from Browser Sidebar

Simply install the browser extension and click to launch GetVM directly from your sidebar.

Select Your Playground

Select Your Playground

Choose your OS, IDE, or app from our playground library and launch it instantly.

Learn and Practice Side-by-Side

Learn and Practice Side-by-Side

Practice within the VM while following tutorials or videos side-by-side. Save your work with Pro for easy continuity.

Explore Similar Hands-on Tutorials

Getting Started with Artificial Intelligence , 2nd Edition

25
Technical TutorialsData ScienceMachine Learning
Comprehensive introduction to AI, covering machine learning and data science. Practical guide to building enterprise applications with real-world examples.

Machine Learning For Dummies, IBM Limited Edition

19
Technical TutorialsData ScienceMachine Learning
Comprehensive guide to machine learning and data science, suitable for beginners and experienced professionals. Authored by experts Daniel Kirsch and Judith Hurwitz.

Data Mining Concepts and Techniques

25
Technical TutorialsData ScienceMachine Learning
Comprehensive coverage of data mining concepts and techniques, including data preprocessing, classification, clustering, and association rule mining. Essential resource for students, researchers, and professionals in data mining, machine learning, and data analysis.

A Brief Introduction to Machine Learning for Engineers

29
Technical TutorialsMachine Learning
Gain a solid understanding of machine learning concepts and techniques for engineers. Covers supervised, unsupervised, probabilistic models, and advanced topics.

A Comprehensive Guide to Machine Learning

24
Technical TutorialsData ScienceMachine Learning
Detailed resource on machine learning, data science, and artificial intelligence. Authored by experienced experts, suitable for beginners and experienced learners.

A First Encounter with Machine Learning

2
Technical TutorialsData ScienceMachine Learning
Explore fundamental machine learning concepts, algorithms, and applications in data science. Suitable for beginners interested in learning about this rapidly growing field.

A Selective Overview of Deep Learning

3
Technical TutorialsDeep LearningMachine LearningNeural Networks
Comprehensive overview of key concepts and recent advancements in deep learning, covering neural network models, training techniques, and theoretical foundations.

Algorithms for Reinforcement Learning

6
Technical TutorialsMachine LearningReinforcement Learning
Comprehensive guide to reinforcement learning algorithms, covering dynamic programming, temporal difference, Monte-Carlo methods, and more. Suitable for researchers, students, and practitioners in AI, ML, and control engineering.

Approaching Almost Any Machine Learning Problem

8
Technical TutorialsMachine LearningPython
Comprehensive guide to problem-solving approaches in machine learning, suitable for beginners and experienced practitioners. Covers a wide range of ML topics and techniques.