This course is a first-year graduate course in algorithms. Emphasis is placed on fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Techniques to be covered include amortization, randomization, fingerprinting, word-level parallelism, bit scaling, dynamic programming, network flow, linear programming, fixed-parameter algorithms, and approximation algorithms. Domains include string algorithms, network optimization, parallel algorithms, computational geometry, online algorithms, external memory, cache, and streaming algorithms, and data structures. The need for efficient algorithms arises in nearly every area of computer science. But the type of problem to be solved, the notion of what algorithms are "efficient, and even the model of computation can vary widely from area to area. In this second class in algorithms, we will survey many of the techniques that apply broadly in the design of efficient algorithms, and study their application in a wide range of application domains and computational models. The goal is for the class to be broad rather than deep. Our plan is to touch upon the following areas. This is a tentative list of topics that might be covered in the class; we will select material adaptively based on the background, interests, and rate of progress of the students.
This course is a first-year graduate course in algorithms. Emphasis is placed on fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation.
This course is recommended for graduate students in computer science or related fields who are interested in a comprehensive survey of advanced algorithmic techniques and their applications across a wide range of domains.
Learn by Doing from Your Browser Sidebar
Simply install the browser extension and click to launch GetVM directly from your sidebar.
Choose your OS, IDE, or app from our playground library and launch it instantly.
Practice within the VM while following tutorials or videos side-by-side. Save your work with Pro for easy continuity.
Discover categories