Parallel Computer Architecture | Programming - Carnegie-Mellon University

Carnegie-Mellon University

Dive deep into the principles and trade-offs of modern parallel computing systems. Learn effective parallel programming techniques to harness their power.

University CoursesHigh-Performance Computing

Introduction

The goal of this course is to provide a deep understanding of the fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good parallel programs requires an understanding of key machine performance characteristics, this course will cover both parallel hardware and software design.

screenshot

Highlights

  • Covers both parallel hardware and software design
  • Teaches parallel programming techniques to effectively utilize parallel computing systems
  • Provides a deep understanding of the fundamental principles and engineering trade-offs in designing modern parallel computing systems

Recommendation

This course is recommended for students interested in understanding the principles and engineering trade-offs involved in designing modern parallel computing systems, as well as learning parallel programming techniques to effectively utilize these machines. It is suitable for those pursuing careers in parallel computing, high-performance computing, or software engineering.

How GetVM Works

Learn by Doing from Your Browser Sidebar

Access from Browser Sidebar

Access from Browser Sidebar

Simply install the browser extension and click to launch GetVM directly from your sidebar.

Select Your Playground

Select Your Playground

Choose your OS, IDE, or app from our playground library and launch it instantly.

Learn and Practice Side-by-Side

Learn and Practice Side-by-Side

Practice within the VM while following tutorials or videos side-by-side. Save your work with Pro for easy continuity.

Explore Similar Hands-on Tutorials

Great Ideas in Computer Architecture | Machine Structures | UC Berkeley

22
University CoursesC
Explore fundamental concepts in computer architecture, including C and assembly programming, caches, performance measurement, and parallelism. Gain valuable skills for computer science and engineering.

Computation Structures | Digital Systems Design | Hardware-Software Intersection

28
University CoursesComputer Architecture
Explore the fundamentals of computation structures with MIT's 6.004 course, covering digital system architecture, hardware-software integration, and contemporary software structures.

Introduction to the Internet: Architecture and Protocols | CS 168 - UC Berkeley

28
University Courses
Comprehensive course on the fundamental design principles and architecture of the Internet, covering key protocols and technologies. Ideal for students interested in networking and internet infrastructure.

Systems Programming | C Language | UNIX/Linux

13
University CoursesC
Gain a deep understanding of system programming and develop skills to write high-performance, low-level software like web servers and multiplayer internet games.

Distributed Systems | CS 425 - Univ of Illinois, Urbana-Champaign

3
University CoursesComputer ScienceDistributed Systems
Comprehensive course covering fundamental concepts in distributed systems, including vector clocks, consensus, and Paxos. Taught by experienced professor Indranil Gupta.

Cloud Computing | Cornell University CS 5412

12
University CoursesCloud ComputingDistributed Systems
Explore the technology of cloud computing, including cloud architecture, scalability, and security. Taught by industry expert Ken Birman.

Computer Architecture | CSCI 360 | CUNY Hunter College

22
University CoursesComputer ArchitectureGPU Programming
Dive into advanced computer architecture topics like cache design, memory hierarchies, and multiprocessors, including in-depth coverage of GPUs and hands-on CUDA programming.

Parallel Computing | CSCI 493.75 - CUNY Hunter College

25
University CoursesCC++
Dive into parallel algorithms and programming with C/C++, MPI, and OpenMP. Gain hands-on experience and understand the principles of high-performance computing.

Programming for Performance | ECE 459 - University of Waterloo

21
University CoursesC++GPU Programming
Learn advanced techniques for profiling, rearchitecting, and implementing high-performance software systems, including parallelization, multithreading, async I/O, and distributed computing.